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Abstract-Consideration is given to the main trends in heat and mass transfer during free, stabilized (in the 
statistical sense) floating ofliquid spheroids over a heated surface or over a microporous surface through which 
a cold gas is injected. Based on the analysis of the experimental data available in the literature, the main 
mechanism operative in holding up a floating spheroid during intensive heat transfer (or intensive injection) is 
shown to be the resistance to the vapour (gas) outflow from the periphery of the gap between the bottom of the 

spheroid and the underlying surface. 

THE HISTORY of research into the floating ofliquid drops 
over a hot surface begins with a paper by Leidenfrost 
(1756), though the dances of water and milk drops on a 
hot kitchen stove have been observed by housewives 
from time immemorial. This phenomenon served in the 
first half of the 19th century as one of the last ‘proofs’ for 
the existence of a thermogen. It was also assumed to be 
one of the specific states of substance, and Boutigny 
(1840) suggested the term “the spheroidal state of 
liquid” due to the “repulsive thermal force”. The correct 
idea that such floating is maintained by evaporation 
was advanced by several researchers in the last century 
(Bandrimont, 1836; Person, 1842; Armstrong, 1845). 
Berger (1863) described the oscillations of the form of 
floating drops. The detailed review of the state of this 
problem by the last quarter of the 19th century and the 
accurate experimental confirmation of the existence of 
a gap between a floating drop and a heated surface are 
due to Gesekhus [l]. 

In our time this phenomenon is ofinterest both as an 
analogue of some complex regularities of the thermo- 
hydrodynamics of boiling and as a method to trans- 
fer heat and mass in many technological processes 
connected with the evaporation of liquids and con- 
densation of vapour. 

The floating of arbitrary freely spreading liquid 
volumes over a heated surface was described by the 
present author and Borishansky [2], the author’s first 
post-war co-worker. Subsequently, the latter devoted 
his candidate thesis to this problem [S]. It was at this 
time that an analogy was shown to exist between the 
heat transfer to a free liquid volume evaporating on a 
heated surface and heat transfer from a heated surface 
placed into a large volume of boiling liquid (Figs. 1 
and 2). 

To describe the process of floating, the present 
author suggested a hydrodynamic model which he had 
begun to develop for the critical phenomena in boiling 
c2,4,51. 

Later Baumeister considered a somewhat different 
hydrodynamic model and, together with Hamill and 

Schoessow, offered a generalized correlation for a 
number of experimental data [6]. 

Recently Goldshtik, Khanin and Ligai, the Institute 
co-workers of this author, have performed direct 
experiments to verify the analogy between ‘hot’ and 
‘cold’ floating of free liquid volumes over an underlying 
solid surface [7]. They used a microporous plate in 
much the same way as had been done in the experiments 
of Malenkov and this author on the displacement effect 
in a large volume of freely circulating liquid [S]. All of 
the main shapes of liquid drops floating over a heated 
surface have been reproduced : quasi-spherical drops, 
flat and bubbly spheroids. Interesting experiments on 
the behaviour of a free liquid surface in the vicinity of a 
heated rod have been carried out by the author’s co- 
workers Avksentyuk and Bochkarev [9]. 

Furthermore, some other experimental results have 
been published, e.g. in refs. [lo, 123. All these have 
prompted this author to return to the problem of the 
floating of liquid drops. 

This paper offers a certain hydrodynamic generaliz- 
ation for the basic characteristics of evaporation of 
liquid volumes freely floating over a solid base. Thus, 
a stabilized floating is considered to which there 
corresponds the right branch of the function t(AT) after 
the passage through the maximum. 

The quasi-static deformation of a freely floating liquid 
volume, i.e. a change in the relation between its 
averaged linear characteristics, is determined by 
the interaction of capillary and gravitational forces. 
Taking the quantity a,, = (o/gAp)‘/2 as the linear scale 
of this interaction, the following dimensionless 
quantities can be introduced 

p& = V/S&, i?,, = R/6,,. (1) 

At 17,, << 1, a drop has a shape close to spherical. At 
i?,, > 1, a liquid spheroid becomes progressively 
flatter. In the limit, the thickness of a freely spreading 
liquid becomes of the order of 26,,. However, this 
is a great idealization, and a floating spheroid still 
differs from that located on the underlying non- 
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NOMENCLATURE 

heat diffusion [m’ s- ‘1 
specific heat [J kg-’ K- ‘1 
diameter 
equivalent diameter, (~V/R)“~ [m] 
diffusion [m2 s- ‘1 
heat transfer surface Cm-‘] 
free fall acceleration [m s-‘1 
heat flux density [W m-‘1 
radius [m] 
latent heat of evaporation [J kg-‘] 
temperature [K] 
‘solid surface-saturation’ temperature 
difference, T,- T, [K] 
time [s] 
velocity of motion [m SC’] 
volume [m3]. 

Greek symbols 

1 
heat release [W mm2 K-l] 
thickness of a spheroid [m] 

1 thermal conductivity (W m- ’ K- ‘) 

p dynamic viscosity [Pa s] 
V kinematic viscosity [m2 s- ‘1 

LJ 

density [kg m - 3] 

= PI-P” 
& = PIP, 
P” = P”IPI 
CT surface tension [N m- ‘1 

ur emissivity [w m-* K-7. 

Similarity numbers 

A r * 

K 

Nu* 

Fr 

P 

non-standard form of Archimedes 
number typical of the phenomenon in 
question, gApS&/p,az 
thermal criterion of phase transitions, 
r/c,AT 
Nusselt number based on the scale of 
capillary gravitational interaction, 

@4x,/4 Cd,, = ~~lsW1’21 
generalized Froude number, 

(P, VMgAp V1’3) 
ratio of the spheroid volume at the time 
instant t to its volume at the initial 
instant t = 0, V/V, 
relative volume on the scale of capillary, 
gravitational interaction V/S&. 

Subscripts 
1 liquid 
V vapour, gas 
ev evaporation 
0 characteristic state at a certain instant of 

time. 

Superscript 
denotes non-dimensional quantities. 

J 

350 400 500 600 700 800 

FIG. 1. Vaporization time of a quasi-spherical water drop vs the temperature of a heated surface. The 
surrounding medium is air at atmospheric pressure. The initial volume of the spheroid is 46-48 mm’. The 
heated surface is made of brass 2 mm (1) and 8 mm (2) thick. One can observe the effect of the accumulating 
capacity of the heated surface at the stages ofintensive heat transfer and the independence of stabilized floating 
of this factor (AT > 150 K). The left branch of the curve t(AT) corresponds to nucleate boiling (AT < 75 K). 

The transitional area is in the range 75 < AT < 150 K. 
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FIG. 2. (q) vs AT: (a)evaporation of a spheroid ;(b) boiling on a heated surface immersed into a large volume of 
a freely convecting saturated liquid (water at atmospheric pressure). 

wettable surface. In the case of a large suspended 
spheroid there may also occur considerable oscilla- 
tions in the shape (Fig. 3). 

Figure 4 shows the dependence of the diameter and 
maximum thickness (mean statistical) of spheroids on 
the equivalent diameter according to the data of refs. 
[3, 71. Table 1 lists the thicknesses of bubbly spher- 
oids averaged on the basis of numerous measure- 
ments [3]. 

As is seen, the characteristic thickness of bubbly 
spheroids is stabilized at the level 8, x 3. The averaged 
shape of monospheroids (i.e. liquid volumes without 
inrush of vapour) deviates from both the sphere and 
disk within the whole interval of their existence. Bubbly 
spheroids appear at R 5 66,,. 

Thus, the absence of strictly canonical shapes of 
spheroids and their fluctuations makes the theoretical 
models limited. The last word here belongs to the 
experiment and similarity analysis within the frame- 
work of sufficiently distinct asymptotic models [13]. 

The mean coejicient of heat transfer to a spheroid, 
which contains all the mechanisms of heat transfer 
to the spheroid and its evaporation, for the time t 
during which the liquid volume changed from V, to 

Table 1. 

Substance 

Hz0 
GHs 
cc14 
C,HSOH 

PI 6 

(kg m -3) (N Z- ‘) (mG) (II&) S, 

958 0.059 2.51 1.15 3.09 
817 0.021 1.62 5.20 3.21 

1433 0.020 1.20 3.78 3.15 
737 0.018 1.52 4.86 3.19 

V, is determined by the elementary heat balance at 
r >> c,( IT;) : 

ctATF dT = -rp, dV; AT = const. 

(+f 

For a flat spheroid V = F6,, F = nR2, 

for a spherical drop V = (4n/3)R3, F = Y’nR’, 

(a) = 

0 

; 1’3 !E$ py3 _ v1/3). (4) 

Here Y is the coefficient of the effectiveness of heat 
transfer ofthe lower hemisphere. Formula(3)is valid up 
to the values R z 6, and formula (4) up to R = 0. The 
latter formula can be used to determine the mean heat 
transfer rate to quasi-spherical drops from their 
complete evaporation time to assuming that Y = 1: 

(IX) z 2.48 cvp1Kv”3. 
to 

Table 2 presents some experimental results. Here, the 
value of the vapour gap under a spheroid has been 
estimated from the experimental value of (oz) and from 
the heat conduction mechanism, i.e. it has been 
assumed that (6,) = L,/(a). 

There are infact,jive interacting mechanismsfor heat 
transfer of a liquid spheroid with the surrounding 
medium, i.e. conductive (strictly speaking, conductive- 
convective) transfer from a heated surface with the 

Table 2. 

c, x 10-a Ax 102 rxlO_’ v, 
(kg:-‘) (mm”) $?) K ;so (W 

(Go 
Substance (J kg-’ K-l) (W m-l K-‘) 

(6”) 
(J kg-‘) m-* K-‘) (mm) 

Hz0 2.137 2.42 22.58 958 46.5 165 6.40 122 958 0.025 
450 2.35 75.0 572 0.012 

C*H,OH 1.885 1.83 8.25 737 13.6 167 2.62 33.0 653 0.028 
327 1.37 18.8 599 0.030 

CCI, 0.419 0.17 1.88 1433 7.4 305 1.47 11.0 388 0.020 
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FIG. 3. Ffoating of a water spheroid over a microporous surface through which the air is injected. One can 
observe oscillations of the shape. 
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FIG. 4. Dependence of D = D(gAp/u)“2 (1) and 3 = 
~~(gA~/~)“’ (3) on b, = (6~/~)“3(gA~/~)1’z on the basis of 
measurements of spheroids fl_oating over a hot or a cold 

surface. (2) D = I& ; (4) 6 = (4V/nD?) (gA&+*. 

temperature T, to the lower part of the spheroid where 
the saturation temperature T, is attained, correspond- 
ing to the pressure p0 + gAp6,, where p0 is the pressure 
in the surrounding medium ; absorption by the 
spheroid of the incident energy emitted by the heated 
surface; evaporation from the lower surface of the 
spheroid to the gap between it and the heated surface; 
conductive-convective heat transfer from the lower 
part of the spheroid to its upper part ; evaporation from 
the outer surface of the spheroid into the surroundings. 

The radiation heat transfer from the heated surface to 
the lower part ofthe spheroid can be estimated as black- 
body radiation due to the smallness of the ratio 6,/R for 
most of the time that liquid evaporation occurs. In this 
case the efficiency factor of radiative heat transfer is 

u, = a,(T$- T;)/AT. (6) 

For water at T, = 373 K we have the following 
approximate values of CL, : 

T, W 473 573 673 713 873 
a,(Wm-*K-l) 17.4 25 35 48 64. 

The vapour flow in the gap between the lower surface 
of the spheroid and the heated surface may be assumed 
to be laminar and, hence, the total coefficient of heat 
transfer to the spheroid can be determined by the 
formula 

u = &,/6, + a,. (7) 

In fact, the Reynolds number of the vapour flow in 
the gap is of the order 

Re, G u”~~~~v~, (8) 

where U,, = U,,R/26,, is the vapour outflow velocity 
around the periphery of the gap, R is the radius of the 
outflow zone, U,, = (“AT-q,)/rp, is the outflow 
velocity per unit surface under the spheroid, a,, is the 
gap thickness at the radius R,q, is thedensity ofthe heat 

flux to the body of the spheroid. The estimates based on 
the above experimental values of cI show that the mode 
of vapour flow in the gap under the spheroid is in fact 
laminar. 

The mechanism of heat transfer through the 
spheroid is conductive-convective, since on the 
surface there exists the temperature gradient aT/dx 
and, correspondingly, the surface tension gradient 
(dr/aT) @T/ax), which causes thermocapillaryconvec- 
tion in the spheroid. This gradient has maximum values 
within the equatorial region of the spheroid and causes 
eddy flows inside it. Along with this, the friction effect of 
the vapour outflowing from under the spheroid can be 
noted. 

The minimum heat flux through the spheroid in the 
quasi-steady approximation is determined by pure heat 
conduction 

(II +-7;). (9) 
I 

Here Ti is the mean temperature of the outer surface of 
the spheroid. 

The minimum evaporation rate from the outer 
surface of the spheroid is determined by the molecular 
diffusion of vapour into the surrounding medium : 

(10) 

In the case of a quasi-spherical drop, evaporation 
occurs from the upper hemisphere, i.e. from the surface 
a2nR2 and A = 1, and for a flat spheroid-from the 
outer surface RR’ and A = 4/n. 

The difference Ap, is determined by the density of the 
saturated vapour at the temperature of the outer 
surface of the spheroid, 7;, and by the vapour density in 
the undisturb~ region of the surrounding medium. 

As is seen from formulae (9) and (lo), the evaporation 
from the outer surface of the spheroid depends only on 
the physical properties of the liquid and its saturated 
vapour and also on the diffusion and concentration 
coefficients of the vapour of the given substance in 
the surrounding medium. Therefore, the efficient co- 
efficient of heat transfer to the surrounding medium 
due to evaporation from the spheroid outer surface is 

~1,” * ADJAP,IWT), (11) 

and decreases with an increasing temperature of the 
heated surface. 

Equating the heat fluxes in formulae (9) and (lo), the 
equation results in determining the temperature on 
the spheroid outer surface : 

IT; x T,- D,r&Ap,/(l,R). (12) 

Thus, at 6, x R the temperature of the spheroid outer 
surface is virtually inde~ndent of its dimensions, 

For a water spheroid floating in dry air at 
atmospheric pressure, the corresponding estimate 
yields 7; x 350 K and a,, = 14(RAT)-’ W me2 K-r. 
Hence, for small-size spheroids (i.e. in the final stage of 
evaporation) and not very high temperatures of the 
heated surface, the contribution of the external 
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FIG. 5. Temperature profile with respect to the height ofa water 
spheroid, R = 4.5 mm, AT s 180 K. In the top right corner 
one can see the schematic diagram and the direction of the 

eddy motion in the spheroid. 

evaporation to the heat and mass transfer of a liquid 
spheroid may be appreciable. 

A. A. Bochkarev studied the circulation of liquid in 
water and ethanol spheroids. He observed the presence 
in drops of both convection in the form of a single 
general eddy (water, initial diameter 10 mm) and the 
generation of paired eddies (ethanol, initial diameter 9 
mm and less). As the size of an ethanol drop decreased, 
the pair oflarge eddies split and collective motion could 
be observed. It may well be that the difference between 

the internal circulation of water and ethanol is due to 
the capture of surfactants by water. At small diameters 
(~2 mm) a sharp cessation of liquid circulation was 
observed. 

Figure 5 shows the results of measurements of the 
temperature profile in a water spheroid floating over a 
heated surface in the air in normal conditions. One can 
distinctly see the quasi-isothermal core, i.e. under these 
conditions the heat transfer from the inner surface to 
the outer one is practically affected only by eddy 
thermocapillary convection. Accordingly, the tempera- 
ture level of the outer surface of the spheroid, IT;, is 
higher than that in the model of pure heat conduction 
leading to formula (12). Though the difference in the 
values of ‘I; is of the order of several K, however, this 
leads to an increase in the value of aev at the expense of 
an increase of Ap, in formula (11). 

The basic prerequisite of the hydrodynamic models of 
the floating of spheroids is reduced to the requirement 
that the hydrostatic pressure gAp6, should be balanced 
by the corresponding hydrodynamic pressure in the 
vapour layer on the underlying solid surface. This 
pressure is created at the cost of the resistance to vapour 
outflow around the periphery of the spheroid and due 
to the friction of the vapour flow in the gap. 

The first mechanism suggested by this author in 1964 
is always necessary, since in its absence there may occur 
contact of the spheroid periphery with the underlying 
surface. The second mechanism may affect the for- 
mation of bubbly spheroids when the vapour pressure 

difference between the centre of the gap and its 
periphery becomes commensurable with the excess 
hydrostatic pressure. Baumeister ignored these cir- 
cumstances and adopted the viscous friction in the 
vapour layer as the basic mechanism. 

Consider the relations following from both the 
models. 

The outflow model yields the following relations : 

ifgAp = P,U$J~; U”R = U”,R/26”,, (13) 

where [, is the outflow coefficient taking into account 
also the deformations in the gap and at the outlet cross 
section. In the case of ‘cold’ floating 

6 “z U”,R (14) 

in the case of ‘hot’ floating, when qr-q, CC &AT/&, 

a as~z TlW+~lcvAT) 
6” ATR > 

1’2(8gApp 6)"4. (15) 

” I 

Here cpi is the coefficient of averaging the vapour 
temperature in the gap, cpi % 0.5 (according to thedata 
of ref. [S], ‘pi = 7/20). 

The viscous friction model yields the relations 

for ‘cold’ floating 

(17) 

for ‘hot’ floating, when qr - q, c &AT/&, 

Lx% 
2C2G(r + vplcVAT)&pv4 1’4 

p”ATR2 1 . 
(18) 

Informulae(l4)and(l7) U,,is thevelocityofgassupply 
under the spheroid through a microporous surface. 

The measure of the relationship between the dynamic 
pressure (the first model) and the viscous friction (the 
second model) is the ratio between the RHSs of 
formulae (14) and (17), i.e. the Reynolds number of the 
form 

Re = U,,Rjv”, (19) 

which is independent of the vapour (gas) gap thickness. 
The mechanism of molecular friction dominates 

when Re =z 1. Using the experimental data of Table 2, 
one can easily reveal that in the real conditions of the 
experiments Re >> 1. 

Since generally for heat transfer 

Uvo = CWTT/h + 4T4, - Tl’) - al (rp,)- I, (20) 

then the radiative component and the external 
evaporation partially compensate each other in the 
determination of U”O, 6” and ~1. The parameter which 
characterizes the total effect of radiation and external 
evaporation is 

(21) 



Thermohydrodynamics of quasi-stable floating 523 

The vapour viscosity connected with the thermal 

conductivity coefficient through the Prandtl number 

and heat capacity : c,p, = Pr,&, where Pr, x 1. 
Therefore, accurate to the value Pry, formulae (15) and 
(18) differ only in the function of the phase transition 
criterion K = r/c,AT, i.e. according to the outflow 
model 

l/Z 
N (K +q~)“~; (22) 

according to the viscous friction model 

@ N (K + (P#‘~. (23) 

It is these relations which make it possible to ascertain 
the correspondence ofthe model to the real process. For 
this purpose, it is convenient to pass over to the times of 
vaporization of spheroids. 

The time of evaporation from the volume V, 
to the volume V is determined by equation (2) at 
ct = L,/6,+a,. The value of q, exerts an influence 
only via the value of a,, i.e. usually not strongly due to 
some mutual compensation of qr and q,. Therefore, 
determine the value of tl to the first approximation 
from equations (15) and (18). 

For a quasi-spherical liquid volume 6, x R and, 
according to the outflow model, 

f= ~J-Y2W~~,)1’4 
p,c,“2( yy 2 - VW) N K(K+cp,)-“‘; (24) 

according to the viscous friction model, 

T- K(K+cp,)-1’4. (25) 

The quantities c,, 1,, py should be related to the 
temperature (T,) = T,+ pIAT. Practically, to the 
extent of the accuracy of the measurements available, 
all the physical properties may be related to T,, 
considerably simplifying all calculations. 

At K > 1.5, the correction for the heat content of the 
vapour layer, which is characterized by the quantity cpl, 
amounts to less than 0.1 in equation (22) and to less than 
0.05 in equation (23). Therefore, it is possible to find the 
preferable model by plotting experimental times for 
complete evaporation of drops vs the temperature 
difference AT = T,- T, for a given liquid at the same 

zm 

/Lx7 

80 

so 

40 

a 

\ 

'X L \ \ 
x 

df,K 

initial volumes and the same pressure of the 
surrounding medium. Figure 6 presents such data from 
several experimental series with quasi-spherical drops. 
The results [lo, 121 for carbon tetrachloride cluster 
about the logarithmic straight lines with the slope 
n = -0.5. The data [3, lo] on water behave in the 
same way. The data of ref. [l l] show a sharper 
decline in the high-temperature region, and one 
may draw a logarithmic straight line through them 
with n = -0.75. Closer to this value are also the data 
on ethanol given in refs. [3, 111. 

For large monospheroids approaching the disk form 
6, z const. N 6,,. In this case 

t _ (L,A;gG)l’2&‘)l’4(v;i4- V1/4). (26) 

With allowance for the numerical coefficients in 
equation (15), formula (26) will have the form 

t = 13 (>- $$ li2(gAppV)- 1/4(V;/4- V1’4), (27) 
” 

where l3 = 4(8x)- 114<; ‘1’. 
Figure 7 presents, in the coordinates of formula (26), 

the experimental data of ref. [S] on large mono- 
spheroids. It is seen that at V > 0.1 V, the dependence 
t - (VA’“- V114) is quite perfectly valid. There is 
some spread in the experimental points for AT. 
This scatter increases on passing over to the viscous 
friction model (i.e. from t - AT-“’ to t N ATe314). 

According to the data of Fig. 7, the proportionality 
factor in equation (26) is equal to 5. If we assume that 
6, x 2.36,, (see Fig. 4), then in formula(27) I3 x 3.3 and 
(1 x 0.3. 

As the volume varies, V < O.lV,, the evaporation 
process integrally approaches the law ofevaporation of 
quasi-spheres. 

To correlate the experimental data on the times of 
evaporation of monospheroids, formula (24) was used 
for V = 0 and qpl = 0. The results are given in Figs. 8 
and 9 in the coordinates 

t,; x, = (>- & 1’2(gApp,)- 1/4V;/12. (28) 
” 

For X, < 180 s the experimental data are better 

FIG. 6. Total vaporization time of a spheroid vs temperature difference AT = T,- T,. (a) H,O : A-V, = 
46 mm3 [3]; l , O---V, = 30, 15 mm3 [lo]; x--V, = 29 mm3 [ll]; (b) Ccl,: A--V, = 8 mm3 [12]; 

0, m-V,, = 8,4 mm3 [IO]. 
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FIG. 7. Vaporization time of large monospheroids vs complex X = (VA”- V’i”)(r/~,ATghp)‘~2(crpJ~~)‘~4. 
H,O: .-AT = 250 K; O-AT = 175 K [3]. 

200 

0 
2do 3cu 460 

FIG. 8. Total vaporization time of monospheroids vs complex X,. H@: O-V, = 45-SOOO mm3 [3]; 
O--v, = 15-32 mm3 [lo]; O-V, = 15-94mm3 [12];O-vo = 29 mm”; p = 0.13-0.66 MPa [II]. Ccl,: 
~-~~=7-9mm~[3];*-~,=4-8mm~[10];+-~~=5-9mm~[12].C,H,OH:~-~~~ 13mm3[3]; 

A-V, = 614 mm3 [lo]. 

0 20 40 60 80 
FIG. 9. Data of Fig. 8 on an extended scale at X 1 c 80 s. Experiments of ref. [1 l] at various pressures. (MPa): 

n-0.13; O-0.26; o-0.4; O-0.53; m-0.66. The other symbols correspond to those of Fig. 8. 
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f 5 IO ” 

FIG. 10. Data of Fig. 8 in the coordinates {<K}. 

correlated by the relation &a = 1.75X,; and for 
X, > I80 s by the relation t = 1.69X1. It is 
virtually possible to assume that t, = 1.7X,. 

One can assume that the above formulae correctly 
reflect the most essential trends in the evaporation of 
spheroids which statistically stably float over a heated 
surface, since in the experiments analysed, the physical 
properties, liquid volumes, temperature differences and 
pressure in the surrounding medium vary within a wide 
range. This, however, does not exclude the possibility of 
a certain interaction between the mechanisms of 
outflow around the spheroid periphery and molecular 
friction in the inner region of the vapour gap. There- 
fore, the most suitable semi-empirical correlation of 
experimental data on monospheroids is their pres- 
entation in the coordinates (T; K}. The data of Fig. 8 
are presented in these coordinates in Fig. 10. 

The heat transfer rate to bubbly spheroids can be 
estimated with the aid of formula (22) by substituting 
into it the quantities 6, N RI - 6,, where R, is the 

effective radius of a liquid volume statistically per one 
vapour dome. This quantity remains a multiple of the 
quantity 6,, until the number of domes attains unity, 
since in the case of several domes the liquid volume for 
each of them remains statistically constant. 

Then 

Nu, N Ar:14K’12. (29) 

Figure 11 presents the data of ref. [3] in the 
coordinates of this formula. Here the heat transfer 
coefficient is related to the total area of bubbly spheroid 
projection on a heated surface, i.e. also including the 
area occupied by vapour domes which grow in liquid. 
The proportionality factor in equation (29), according 
to these data, is equal to 0.32. It should be noted that the 
quantity Ar, 1/4 has similar values for a number of 
substances. 

The evaporation time ofa bubbly spheroid( I/ 5 S&), 
before the appearance of a monospheroid (V ? S,&) 
is determined by the conditions u. x: const. and 

0 20 40 60 
FIG. 11. Dependence of Nu, on .4r~“‘Kx’a according to the data of ref. [3] for bubbly spheroids: l -H,O; 

O-CIHSOH; A-Ccl,; A-&He. 
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FIG. 12. Relative variation of the volume of a bubbly spheroid in time according to the data of ref. [3]. H,O : 
-AT= 261 K, V-AT= 407 K; Ccl,: v-AT= O-AT = 250 K, O-AT = 400 K; C2HSGH: A- 

242 K, A-AT = 512 K; C,H,: x -AT = 260 K, @-AT = 450 K. 

6i ;= const. In this case 

r,, N ln (WV), 

“’ - 
(gAppy)1’48,5’4. (30) 

Figure 12 gives the corresponding processing of the 
experimental data of ref. [3]. 

Thefloating of a liquid spheroid over a cold permeable 
surface is not a rigorous analogue of the floating of an 
evaporating liquid over a hot surface. In the former 
case, if the experiment is conducted in the same way as 
in ref. [7], gas is injected through regularly and rather 
closely spaced small orifices not only beneath the 
spheroid, but also exterior to it. Thus the outflow from 
under the spheroid passes over into a forced, upward 
gas flow around the periphery. Besides, the intensity of 
gas supply under the spheroid is smaller than that 
beyond it due to the hydrostatic pressure created by the 
spheroid. Therefore, the floating of liquid spheroids 
over a microporous surface depends not only on the 
Froude and Archimedes numbers and the relative 
volume 

(31) 

but also on the relationship 

bp=L!!- 
gApV/‘13 ’ 

where Ap is the pressure difference in the permeable 
plate over which the spheroid is floating. Only at 
Ap >> gAp V ‘I3 the supply of’ gas to beneath the 
spheroid will be independent of the size ofthe latter. The 
main value sought in this case is the relative thickness of 
the gap 8” = 6,V- ‘j3. 

Some determination(not very stable) of this quantity 
has been undertaken in ref. [7]. The thicknesses 6, are of 
the same order of magnitude as those in Table 2, but still 
considerably higher. 
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THERMODYNAMIQUE DU FLOTTEMENT QUASI-STABLE DUN VOLUME LIBRE DE 
LIQUIDE SUR UNE SURFACE SOLIDE 

R&sum&-On considere les traits principaux des transferts de chaleur et de masse pendant le flottement de 
sphbdides de liquide stabilises sur une surface chaude ou sur une surface microporeuse a travers laquelle un 
gaz froid est inject& A partir de l’analyse de don&es exp%imentales disponibles dans la bibliographie, le 
principal mtcanisme actif qui maintient un spherdide flottant pendant le transfert thermique intensif (ou 
l’injection intensive) est montre etre la resistance a la sortie de vapeur (gaz) de la phbriphirie de l’espace ttroit 

entre la base du sphero’ide et la surface sous-jacente. 

THERMOHYDRODYNAMIK DER QUASI-STABILEN BEWEGUNG EINES FREIEN 
FLUSSIGKEITSVOLUMENS UBER EINE FESTE OBERFLACHE 

Zusammenfassung-Betrachtet wird der W&me- und Stoffiibergang bei der freien, statistisch stabilen 
Bewegung von Fliissigkeitstropfen tlber einer beheizten Oberfllche oder tiber einer mikroporijsen Fliiche, 
durch die kaltes Gas eingeleitet wird. Aus experimentellen Daten in der Literatur kann man ersehen, dal3 der 
Hauptmechanismus, der einen stromenden Tropfen wiihrend des intensiven Warmeiibergangs (oder bei der 
intensiven Gaseinleitung) stabil erhiilt, auf dem Widerstand des Dampf- oder Gasaustritts zwischen der 

Unterseite des Tropfens und der darunterliegenden FlHche beruht. 

TEPMOIIiJ(POAkiHAMMKA KBA3UCTAF&LJIbHOl-0 BkiTAHkiR CBOlSOJ(HOrO OESEMA 
WIAKOCTki HAA TBEPAOR rIOBEPXHOCTbI0 

.klHOTSlQilll-PaCCMaTpEiBalOTCR OCHOBHbIe 3aKOHOMepHOCTH TemoMaccoo6MeHa upH CB060AHOM,CTa- 
6EiJIH3EipOBaHHOM BBTaHUH XWnKIIX C$IepOlinOB HanrOpFIefi U MAKpOIIOp&iCTOi nOBepXHOCTKMH,Yepe3 

KoTopbre nposi3Bomi~cr ~nyB xono,qHoro ra3a.Ha 0cHoBe aaanusa HMemqkixcK BmiTepaType3Kcnepw 

MeHTaJIbHbIX AaHHbIX lTOKa3aHO,YTO npL4 HHTeHCBBHOM TelTJlOO6MeHe(HJtH UHTeHCBBHOM BAyBe) OCHOB- 
HbIM MexaHH3MoM ynepmaHufl BHTaIomero c@epoana sanaercs conporasneriue ncreYemiro napa(ra3a) 

c nepa+epen 3a3opa Memny AIHOM c@epowa i4 noncrunaromeii noeepxnocrbro. 


